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Abstract

Percolation theory can be used to find water flow paths of least resistance. The appli-
cation of percolation theory to drainage networks allows identification of the range of
exponent values that describe the tortuosity of rivers in real river networks, which is
then used to generate the observed scaling between drainage basin area and chan-5

nel length, a relationship known as Hack’s law. Such a theoretical basis for Hack’s law
allows interpretation of the range of exponent values based on an assessment of the
heterogeneity of the substrate.

1 Introduction

River networks display complex organization as documented in numerous studies. This10

work addresses but one of them. In particular, the relationship between drainage basin
area and river length is non-trivial. In Euclidean geometry the basin area, A, would be

proportional to the square of the river length, l , i.e., l should be proportional to A1/2. In
actuality, as determined by Hack (1957), this relationship is

l = CAβ15

with the value of β approximately 0.6. Later investigations did not always return the
identical value of β. Nevertheless, Maritan et al. (1996) consider the value of β to be
well constrained and refer to a study of Gray (1961) as having established that “the
accepted values for the exponent [β] are in the range 0.57 to 0.6”.

Hack (1957, p. 65) asserts that the relationship was a consequence of the length-20

ening of drainage basins with increasing size. But Montgomery and Dietrich (1992)
compare straight-line basin length, L, to A over seven orders of magnitude of length
scale and find precisely L = A0.5. That result allows stream length to be expressed in
terms of the straight line basin dimension, l = Aβ = Lγ = L2β, so that γ = 2β. The ex-
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ponent γ > 1then defines the tortuosity (sometimes known as sinuosity) of the stream
path through the drainage basin.

Hack’s law explanations have been sought in fractal (Tarboton et al., 1988; Maritan
et al., 1996), constructal (Reis, 2006) and “feasible optimality” (Rigon et al., 1998)
theories. Fractal theories produce the required self-similar drainage basins (Peckham,5

1995) as well as increasing stream sinuosity downstream. I suggest that Hack’s law can
be understood using percolation theory (Stauffer and Aharony, 1994) because (1) the
fractal structure of the percolation cluster generates values for γ that constrain the
data for β appropriately, and (2) it exploits the concept that water flows along paths of
minimal resistance, as in the subsurface also (Hunt et al., 2014).10

2 Theory

There are two distinct applications of percolation theory to flow or conduction prob-
lems, and these two applications are those that provide the bounds to the exponent
values. The more familiar application is to a binary system, where, e.g., bonds either
connect neighboring sites (which in the simplest case are located on a lattice, or grid),15

or they don’t. If enough such neighboring sites are connected, a continuous path of in-
terconnected bonds spans the system. This is denoted the percolation threshold. The
shortest distance across the system within this connected cluster is called the chemi-
cal path length (Porto et al., 1997). Since all bonds have equal resistance, the shortest
flow path has also the lowest dissipation.20

The second possibility is a system, in which bonds of varying resistance connect
each pair of neighboring sites. When the system is strongly heterogeneous, i.e., when
the distribution of the natural logarithm of the resistances has variance, σ2 � 1, the
proper application of percolation theory is to find the path of least cumulative resis-
tance. Quantification of this process equates an integral over the local conductance25

distribution, from a “critical” value, to the largest value, with the percolation thresh-
old (Pollak, 1972). This particular method became known as “critical path analysis,”
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or CPA. The subnetwork so defined is precisely at the percolation threshold (Stauffer
and Aharony, 1994). However, the most interesting path across this system is not the
shortest, but the optimal path, which provides the least energetic cost in a strongly
heterogeneous network (Lopez et al., 2005). Since the optimization is not for length,
but for energy costs, the path is longer than in a homogeneous system, meaning that5

its tortuosity exponent is larger. Nevertheless, the chemical path length in a homoge-
neous system is the analogue of the optimal path length in a heterogeneous system,
because the shortest path in a system with identical links also represents the path of
minimum energy dissipation.

In two dimensions, the chemical path length scales with the system size (Sheppard10

et al., 1999), L as L1.13, but the optimal path length scales with system size as L1.21.
Calling the scaling exponent, γ, as above, we therefore find that percolation theory con-
strains its values to be, 1.13 < γ < 1.21. It should be emphasized here that the precision
of the numerical calculations of these exponent values by Sheppard et al. (1999) ex-
ceeded all other attempts by at least an order of magnitude. These are thus two possi-15

ble endpoints for the application of percolation theory to the formation of river networks,
and are generated from homogeneous and heterogeneous systems, respectively. How
could they be realized in nature, or in landscape models?

One can start from an initially homogeneous landscape, and allow stream incision
through random headward erosion, analogous to the processes treated in early land-20

scape evolution models (Willgoose et al., 1991), which generate hierarchical structures
from random chance. A connected path with the lowest dissipation (shortest length) will
soon acquire the highest flow, through channel erosion feedbacks. Thus, once a river
makes a random choice, the enhanced erosion power from the stream reinforces the
initial random choice.25

The optimal path exponent describes the tortuosity of a channel, when the channel
is determined by a global optimization of the flow path in a heterogeneous substrate,
and could not be a simple product of headward erosion, which might produce only
a local optimization. In such a case geological constraints from varying erodibility can
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dominate as channels extend either upward, by headward erosion, or downward (e.g.,
by overtopping of sills).

Using the above result that γ = 2β, we find for Hack’s (1957) original result, l = L1.2.
The range quoted by Maritan et al. (1996), 0.57 < β < 0.6 generates 1.14 < γ < 1.20.
The predicted range of tortuosity exponent values, γ, generated by percolation theory5

appears to differ by less than 1 % from the observed range of values.
Note that, while e.g., Willemin (2000) found a wider range of β (0.5 to 0.7) than

did Gray (1961), these values were for limited statistics (as small as 11 data points).
Although this range is wide, compared with our predictions, when all statistics were put
together (Willemin’s Fig. 11) the resulting value of β was 0.58. Further, individual values10

did increase monotonically with increasing geologic heterogeneity. Northwestern Iowa,
in the middle of the North American craton produced 0.5, New York, 0.64, and coastal
Oregon, in a region of active tectonics, 0.7.

3 Conclusions

– Percolation predictions generate the range of exponents observed in Hack’s law,15

including the tendency for the largest exponent values to occur in geologically
heterogeneous environments.

– The statistical nature of percolation theory is in accord with the tendency of the
spread in Hack’s exponent values to diminish with increasing sample size,

– The source of the tortuosity in the “optimal paths” of lowest energy dissipation is20

in general accord with the “feasible optimality” (Rigon et al., 1998) proposed to
explain Hack’s law.
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